Decomposition of Pregroups

Dr. Faisal H. Nesayef
Department of Mathematics, College of Science, University of Kirkuk, Iraq
Email: fnesaye@@yahoo.com

Abstract

In section one, we introduced the main concept and definition which we needed in later sections. In section two, we proved that some axioms are equivalent to the other ones. Section three contains the main features of work.

In section three of this paper we proved that any pregroup satisfying P_{6} can be expressed as a product of factors which are also pregroups satisfying P_{6}. We also proved that the universal group of a pregroup satisfying P_{6} is the free product of the universal groups of the factors of P amalgamating the core part P_{o}.

Index Terms - Amalgamation, Core, Decomposition, Factors, Free Prducts, Factors, Length of a word, Pregroup, Reduced words, Universal Group.

1 Introduction

Stallings [5] in 1971 introduced the concept of a pregroup. Subsequent work has been dose by Nesayef [3], 1983, Chiswell [1], 19jm bn87 and many others.
Five axioms were originally introduced by Stallings [5], namely $P_{1}, P_{2}, P_{3}, P_{4}$, and P_{5}. We proved that P_{3} is a consequence of the other axioms and we proved that P_{6} which was introduced by Nesayef [3] is stronger than P_{5}.
Stallings [5] introduced the fallowing construction of a pregroup.

Definition 1.1: A pregroup is a set P containing an element called the identity element of P, denoted by 1 , a subset D of $\mathrm{P} \times \mathrm{P}$ and a mapping $\mathrm{D} \rightarrow \mathrm{P}$, when $(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{x} y$ together with a map i: $\mathrm{P} \rightarrow \mathrm{P}$ when $\mathrm{i}(\mathrm{x})=\mathrm{x}^{-1}$, satisfying the following axioms.
(we say that $x y$ is defined if $(x, y) \in D$, i.e. $x y \in P$).
P_{1}. For all $x \in P, 1 x$ and $x 1$ are defined and $1 x=x 1=x$.
P_{2}. For all $x \in P, x^{-1} x=x^{-1} x=1$
P_{3}. For all $x, y \in P$ if $x y$ is defined, then $y^{-1} x^{-1}$ is defined and $(x y)^{-1}=y^{-1} x^{-1}$.
P_{4}. Suppose that $x, y, z \in P$. If $x y$ and $y z$ are defined, then $x(y z)$ is defined, is which case $x(y z)=(x y) z$.
P_{5}. If $w, x, y, z \in P$, and if $w x, x y, y z$, are all defined them either $w(x y)$ or $(x y) z$ is defined.

Proposition 1.2 : Let P be a pregroup and $a, x \in P$. If $a x$ is defined, them $\mathrm{a}^{-1}(\mathrm{ax})$ is defined and $\mathrm{a}^{-1}(\mathrm{ax})=x$.

Proof: By P_{2}, we have $\mathrm{a}^{-1} \mathrm{a}$ is defined and equals 1 .
Thus by P_{4} and P_{1}, we have $\mathrm{a}^{-1}(\mathrm{ax})$ is defined and
$a^{-1}(a x)=\left(a^{-1} a\right) x=x$.
The following propositions prove that P_{3} is a consequence of the other axioms.

Proposition 1.3 : Let P be a pregroup and $x, y, \in P$. If $x y$ is defined them $y^{-1} x^{-1}$ is defined and $(x y)^{-1}=y^{-1} x^{-1}$

Proof : Suppose $x y$ is defined. Then $x y \in P$ and $(x y)^{-1} \in P$
Consider : $\mathrm{x}^{-1}, \mathrm{xy},(\mathrm{xy})^{-1}$:
$x^{-1}(x y)$ and $(x y)(x y)^{-1}$ are defined .
Since $x^{-1}\left[(x y)(x y)^{-1}\right]$ is defined and equals to x^{-1} then by P_{4}, we have :
$\left[x^{-1}(x y)\right](x y)^{-1}$ is also defined and equals to

$$
x^{-1}\left[(x y)(x y)^{-1}\right]=x^{-1}
$$

By P_{4} again : $y(x y)^{-1}=x^{-1}$
Now consider: $y^{-1}, y,(x y)^{-1}$:
$y^{-1} y$ and $y(x y)$ are both defined.
Since $\left[y^{-1} y\right](x y)^{-1}$ is defined and $=(x y)^{-1}$.
Then by $P_{4}: y^{-1}\left[y(x y)^{-1}\right]$ is also defined and $=(x y)^{-1}$.

Definition 1.4: Let P be pregroup. A word in P is an n -tuple: ($\mathrm{x}_{1} \ldots \mathrm{x}_{4}$) of elements of P , for some $\mathrm{n} \geq 1$. n is called the
length of the word.

Definition 1.5: A word $\left(x_{1} \ldots x_{n}\right)$ is said to be reduced if $x_{i} x$ ${ }_{\mathrm{i}+1}$ is not defined for any $1 \leq \mathrm{i} \leq \mathrm{n}-1$.

Let $P_{0}=\{x \in P: x y$ and $y x$ are defined for all $y \in P\}$. We call P_{o} the core of P .

Proposition 1.6 : $\quad P_{o}$ is a subgroup .
Proof: \quad Suppose $x \in P_{o}$.
By the definition of $P_{o}: x y, y x$ are defined for all $y \in P$ and
by proposition 2: $y^{-1} x^{-1}$ and $y^{-1} x$ are both defined, so $x^{-1} \in P$
Suppose $\mathrm{x} y \in \mathrm{P}_{\mathrm{o}} . \mathrm{xy}, \mathrm{y} \mathrm{z}$ and $\mathrm{x}(\mathrm{yz})$ are all defined for all z $\in \mathrm{P}$.
By $\mathrm{P}_{4}:(\mathrm{xy}) \mathrm{z}$ defined for all $\mathrm{z} \in \mathrm{P}_{\mathrm{o}}$.
We now introduce an additional condition on a given pregroup P :
P_{6} : \quad Suppose ($\mathrm{x} y$) is reduced. If x a and $\mathrm{a}^{-1} \mathrm{y}$ are both defined then $a \in P_{0}$.

It has been proved in [3] that p_{6} is equivalent to :
$P_{6^{\prime}}$: If (x, y) is reduced and $(a x) y$ is defined for $a \in P_{o}$.
A further equivalence statement of P_{6} is given by Hoare [2] as follows:
$P_{6^{\prime \prime}}$: If $\mathrm{x} y$ and $\mathrm{y}^{-1} \mathrm{z}$ are defined and $\mathrm{y} \in \mathrm{P}_{\mathrm{o}}$, then x z is defined.

Definition 1.7 : Let P be any pregroup. The Universal group $\mathrm{U}(\mathrm{P})$ is the set of all equivalence classes of reduced words.

2. Decomposition of Pregroups

Theorem 2.1: Any pregroup satisfying P_{6}, can be expressed as a product of factors P_{i}, where each factor P_{i} is a pregroup satisfying P_{6}.
To prove this theorem, we need the following:

Definition 2.2 :

Let P be pregroup satisfying P_{6} and $P_{o} \neq 1$. Define a relation \approx on $\mathrm{P} \backslash \mathrm{P}_{\mathrm{o}}$ by:
$x \sim y$ if and only if $\exists a \in P_{o}$ such that x a y is defined.

Proposition 2.3: The relation \sim is as equivalence relation .
Proof : This is reflexive for $x x^{-1}=1 \in P$.

Symmetric : for if $\mathrm{xay} \mathrm{y}^{-1}$ is defined, these $\left[(\mathrm{xy}) \mathrm{y}^{-1}\right]^{-1}=\mathrm{y}$ $(x a)^{-1}=y^{-1} x^{-1}$.

For transitivity, suppose x a y and $\mathrm{y} \mathrm{b} \mathrm{z}^{-1}$ both defined. Since $y \in P_{o}$ then by $P_{6}, x a b z^{-1}$ is defined.
ie $x \sim z$.
Therefore, " \sim " is an equivalence relation.

Definition 2.4: Define a relative $\approx p \backslash p_{0}$ by :
$\mathrm{x} \approx \mathrm{y}$ if either $\mathrm{x} \sim \mathrm{y}$ or if $\exists \boldsymbol{Z} \in \mathrm{P} \backslash \mathrm{P}_{\mathrm{o}}$ such that $\mathrm{x} \sim$ and y $\sim \mathrm{z}^{-1}$.

Proposition 2.5 : The relation \approx is an equivalent relative .
Proof: This is reflexive and symmetric .
For transitivity we assume that $x \approx y$. Then $\exists u$ and v such that $x \approx u, y \approx u^{-1} \approx v$ and $z \approx v^{-1}$.
Since $u^{-1} \approx v$, then $\exists a \in P_{o}$ such that v a u is defined.
By Proposition $2.3 \mathrm{v}^{-1}$ (v a u) and (v a u) u^{-1} are defined and equal to au and va respectively.

So $v^{-1}(v a u) u^{-1}$ is defined.
If v a $u \in P_{o}$, then $v^{-1} \sim u$ by definition of $\sim, x \sim z^{z}$.
If v a $u \notin P_{o}$, then $v a u \sim u \sim x$ and $v^{-1} \sim u^{-1} a^{-1} v^{-1} \sim z$.
Hence $x \approx z$.
Therefore \approx is an equivalence relation .

Proof of Theorem 1:

Denote the class containing x_{i} under \approx by $\left[x_{i}\right]$.
Let $P_{i}=P_{o} U\left\{y \in\left[x_{i}\right]\right.$ and $y^{-1} \in\left[x_{i}\right]$ and $\left.y^{-1} \in\left[x_{i}\right]\right\}$.
For x_{1} and x_{2} in P_{i}, the product $x_{1} x_{2}$ is defined in P_{i} if and only if $x_{1} x_{2}$ is defined in P.

We now show that P_{i} is a pregroup satisfying P_{6}.
P_{1} and P_{2} are clear from the definition of P_{i}. So we need only consider P_{4} and P_{6}.

For P_{4}, let x, y and $z \in P_{i}$ and let $x y$ and $y z$ be defined in P_{i}. Suppose $(x y) z$ is defined in P_{i}. Then $x y, y z$ and $(x y) z$ are defined in P .

By P_{4} on P , we have $\mathrm{x}(\mathrm{yz})$ is defined in P hence it is defined in P_{i}.

To prove P_{6}, suppose ($\left.x_{1} \cdot x_{2}\right)$ is reduced in P_{i}, then $\left(x_{1} \cdot x_{2}\right)$ is reduced in P .

If x_{1} and $a^{-1} x_{2}$ are both defined in P_{i}, then they are defined in P. By P_{6} on P , we have $\mathrm{a} \in \mathrm{P}_{\mathrm{o}}$.

Therefore P_{i} is a pregroup satisfying P_{6} and denote $P={ }^{*} P_{o} P_{i}$.

3. The Universal Group :

Theorem 3.1: The universal group of a pregroup satisfying P_{6} is isomorphic to the free product of the universal groups of the factors P_{i} of P , amalgamating P_{o}.

To prove this theorem, we need the following :
Definition 3.1: For x_{1} and $x_{2} \in P_{i} \backslash P_{o}$, we say that $\left(x_{1} . x_{2}\right.$) is reduced if $x_{1} x_{2}$ is not defined in P_{i}.

Lemma 3.2: If $x_{i} \in P_{i}, x_{j} \in P_{j}$ for $i \neq j$, then $\left(x_{i}, a x_{j}\right)$ is reduced for all $a \in P$.

Proof: If not then, there exists $a \in P_{o}$ such that x_{i} a x_{i} is defined, then $x_{i} x_{j}{ }^{-1}$ is defined. So $x^{-1} \in P$, then $x_{j} \in P_{i} a$ contradiction .

Now let $U\left(P_{i}\right)$ be the universal group of the pregroup P_{i} defined in stalling [4], further details with proofs are given in [4]

Let $U\left(P_{i}\right)$ be the universal group of the pregroup P_{i} and form ${ }^{*} \mathrm{P}_{\mathrm{o}} \mathrm{U}\left(\mathrm{P}_{\mathrm{i}}\right)$.

Definition 3.3: A sequence $x_{1} . x_{2} \ldots \ldots x_{n}$ is reduced in * $P_{o} U($ P_{i}), if $x_{i} x_{j}$ is not defined for $1 \leq i \leq n-1,2 \leq j \leq n$.

Indeed this expression is not unique, but we only need a reduced form of the elements of ${ }^{*} \mathrm{P}_{\mathrm{o}} \mathrm{U}\left(\mathrm{P}_{\mathrm{i}}\right)$ in the theorem.

Proof of the Theorem :

Define the map $\Phi:{ }^{*} \mathrm{P}_{\mathrm{o}} \mathrm{U}\left(\mathrm{P}_{\mathrm{i}}\right) \rightarrow \mathrm{U}(\mathrm{P})$ by : $\phi\left(x_{1}, \ldots x_{n}\right)=x_{1} x_{2} \ldots x_{n} \in U(P)$, where $x_{1}, x_{2}, \ldots, x_{n}$ is in reduced form in ${ }^{*} \mathrm{Po}_{\mathrm{o}} \mathrm{U}\left(\mathrm{P}_{\mathrm{i}}\right)$

Suppose $\Phi\left(x_{1} \cdot x_{2} \ldots . x_{n}\right)=x_{1} x_{2} \ldots x_{n}=1$, for $n \geq 1$.
If $\mathrm{n}=1$, then $\phi\left(\mathrm{x}_{1}\right)=\mathrm{x}_{1}=1$
If $n>1$, then there exists some i for which $x_{i} x_{i+1}$ is defined in P.

Let $x_{i} \in P_{i}$, then $x_{i+1} \in P_{i}$, moreover, $x_{i} x_{i+1}$ is reduced in P_{i}, a contradiction to reduced form in ${ }^{*} P_{o} U\left(P_{i}\right)$.
Hence ϕ is one- to - one.
Since P generate $U(p)$, then ϕ is onto . i.e. ϕ is an isomorphism.

Therefore $\mathrm{U}(\mathrm{P})$ is a free product of $\mathrm{U}\left(\mathrm{P}_{\mathrm{i}}\right)$ amalgamating P_{o}.

REFERENCES

[1] Chiswell, I. M ; Length Function and Pregroups, Proceedings of Edinburgh Mathematical Society (1987), 30, $57-67$.
[2] Hoare, A. H. M.; Nielson methods in groups with length functions, Math. Scan, (1981), 153-164.
[3] Nesayef, F. H. ; Groups generated by element of length zero and one, Ph. D. Thesis, University of Birmingham, UK, 1983.
[4] Stallings, J. R.; A remark about the description of free products of group, Proc. Cam. Phil. Soc. 62 (1966), 129-134.
[5] Stallings, J. R.; Group theory and three dimensional manifolds, New Haven. (12), University Press , 1971.

