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Abstract— In section one, we introduced the main concept and definition which we needed in later sections. In section 
two, we proved that some axioms are equivalent to the other ones. Section three contains the main features of work. 

 
In section three of this paper we proved that any pregroup satisfying P6 can be expressed as a product of factors which are 
also pregroups satisfying P6. We also proved that the universal group of a pregroup satisfying P6 is the free product of the 
universal groups of the factors of P amalgamating the core part Po. 
 
Index Terms— Amalgamation, Core, Decomposition, Factors, Free Prducts, Factors, Length of a word, Pregroup,  Re-
duced words, Universal Group. 

——————————      —————————— 

1 INTRODUCTION                                                                     
Stallings [5] in 1971 introduced the concept of a pregroup. 
Subsequent work has been dose by Nesayef [3], 1983, Chiswell 
[1], 19jm bn87 and many others.  
Five axioms were originally introduced by Stallings [5], name-
ly P1 , P2 , P3 , P4 , and P5. We proved that P3 is a consequence 
of the other axioms and we proved that P6 which was intro-
duced by Nesayef [3] is stronger than P5. 
Stallings [5] introduced the fallowing construction of a pre-
group. 
 
Definition 1.1:  A pregroup is a set P containing an element 
called the identity element of P, denoted by 1, a subset D of 
P×P and a mapping D →  P , when ( x , y ) →x y  together 
with a map i : P →  P when i (x) = x 1−  , satisfying the follow-
ing axioms . 
( we say that x y is defined if ( x , y ) ∈  D,  i.e. x y ∈  P ). 

P 1 . For all x ∈  P , 1x and x1 are defined and 1x = x1 = x . 
P 2  . For all x ∈  P , x 1−  x =  x 1− x = 1  
P 3  . For all x , y ∈  P if x y is defined , then y 1− x 1−  is defined    
and (x y ) 1−  = y 1−  x 1− . 
 P 4 . Suppose that x , y , z ∈  P . If x y and y z are defined, then 
x ( y z ) is defined, is      which case x ( y z ) = ( x y ) z. 
P 5 . If w, x, y, z ∈  P, and if w x, x y, y z, are all defined them 

either w ( x y ) or (x y) z   is defined. 

 

Proposition 1.2 : Let P be a pregroup and a , x ∈  P. If a x is 

defined, them a 1−  ( a x ) is defined and a 1− ( a x ) = x.   

Proof :  By P 2 , we have a 1− a is defined and equals 1.  

Thus by P 4  and P1, we have  a 1− ( a x ) is defined and  

a 1− ( a x ) = ( a 1−  a ) x = x . 

The following propositions prove that P 3  is a consequence of 

the other axioms. 

Proposition 1.3 : Let P be a pregroup and x, y,∈P . If x y is 

defined them y 1− x 1−  is defined and ( x y ) 1−  = y 1− x 1−   

Proof :  Suppose x y is defined. Then x y ∈P and ( x y ) 1− ∈  P  

Consider :   x 1− , x y , ( x y ) 1−  : 

x 1− ( x y ) and ( x y ) ( x y ) 1−  are defined . 

Since x 1− [ ( x y ) ( x y ) 1− ] is defined and equals to x 1−  then 

by P 4 , we have : 

[ x 1− ( x y ) ] ( x y ) 1− is also defined and equals to  

      x 1−  [(x y ) ( x y ) 1− ] = x 1−   

By P4 again : y ( x y ) 1−  = x 1−  

Now consider :   y 1− , y , ( x y ) 1− : 

y 1−  y and y ( x y ) are both defined . 

Since [ y 1−  y ] ( x y ) 1−  is defined and = ( x y ) 1−  . 

Then by P 4  : y 1− [ y ( x y ) 1− ] is also defined and = ( x y ) 1− . 

 

Definition 1.4 :  Let P be pregroup.  A word in P is an n-tuple:  

(  x1…x4 ) of elements of P , for some n ≥  1 .  n is called the 
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length of the word . 

 

 
 
Definition 1.5 : A word ( x 1 ….xn ) is said to be reduced if xi x 
i+1 is not defined for any 1 ≤  i ≤  n – 1 . 
 

Let P 0  = { x∈  P : x y and y x are defined for all y ∈  P }.  We 
call Po the core of P . 
 

Proposition 1.6 :  Po is a subgroup . 

Proof :  Suppose x∈  Po .   

By the definition of Po :  x y , y x are defined for all y ∈P and 

by proposition 2:  y-1 x-1 and y-1x are both defined , so x -1∈P  

Suppose x y ∈Po .  x y , y z and x ( y z ) are all defined for all z 
∈  P .  
By P 4 :  ( x y ) z defined for all z ∈  Po . 
 
We now introduce an additional condition on a given pre-
group P: 
P6 :  Suppose ( x y ) is reduced. If x a and a 1− y are both 
defined then a ∈  P0 . 
 
It has been proved in [3] that p 6  is equivalent to : 
P6’ :  If ( x , y ) is reduced and ( a x ) y is defined for a ∈  Po. 
 
A further equivalence statement of P6 is given by Hoare [2] as 

follows: 

P6’’ :  If x y and y-1 z are defined and y ∈Po , then x z is defined. 

 

Definition 1.7 : Let P be any pregroup. The Universal group 

U (P) is the set of all equivalence classes of reduced words. 

 
2. Decomposition of Pregroups  

Theorem 2.1:  Any pregroup satisfying P6 , can be expressed 

as a product of factors Pi , where each factor Pi is a pregroup 

satisfying P6 . 

To prove this theorem, we need the following: 

 

Definition 2.2 :  

Let P be pregroup satisfying P6 and Po ≠  1.  Define a relation 

≈  on P \ Po  by:  

x ~ y if and only if ∃  a ∈  Po such that x a y is defined .  

 

Proposition 2.3 :    The relation ~  is as equivalence relation . 

Proof :  This is reflexive for x 1 x 1−  = 1∈P . 

 

Symmetric : for if x a y 1−  is defined , these [( x y ) y 1− ] 1−  =  y 

( x a ) 1−  = y a 1−  x 1−  . 

For transitivity, suppose x a y and y b z 1− both defined. Since 

y ∈Po  then by P6 , x a b  z 1−  is defined . 

i e   x ~  z . 

Therefore,  “~” is an equivalence relation. 

 

Definition 2.4 :  Define a relative ≈  p \ p0  by :  

x ≈  y if either x ~  y or if ∈∃z  P \ Po such that x ~  and y 

~  z 1− . 

Proposition 2.5 :   The relation ≈  is an equivalent relative . 

Proof :  This is reflexive and symmetric . 
For transitivity we assume that x ≈  y.  Then ∃  u and v such 
that x ≈  u , y ≈  u 1− ≈  v and z ≈  v 1−  . 
Since u 1−  ≈  v , then ∃  a ∈  Po such that v a u is defined . 
 
By Proposition 2.3  v 1−  ( v a u ) and ( v a u ) u 1−  are defined 
and equal to au and va respectively. 
 
So v 1−  ( v a u ) u 1−  is defined.   
If v a u ∈  Po , then v 1− ~ u by definition of ~,  x ~  z.  
If v a u ∉  Po , then v a u ~  u ~  x and v 1−  ~  u 1−  a 1−  v 1− ~  z .  
Hence x ≈  z . 
Therefore ≈  is an equivalence relation . 
 

Proof of Theorem 1 : 

Denote the class containing xi under ≈  by [xi]. 
Let Pi = Po U { y ∈  [xi] and y 1− ∈  [xi] and y-1∈[xi] }.  
For x1 and x2 in Pi , the product x1 x2 is defined in Pi if and 
only if x1 x2 is defined in P . 
 
We now show that Pi is a pregroup satisfying P6.   
P1 and P2 are clear from the definition of Pi. So we need only 
consider P4 and P6 . 
 
For P4, let x , y and z ∈  Pi and let x y and y z be defined in Pi . 
Suppose ( x y ) z is defined in Pi . Then x y , y z and ( x y ) z 
are defined in P. 
   
By P4 on P, we have x ( y z ) is defined in P  hence it is defined 
in Pi. 
 
To prove P6 , suppose ( x1.x2 ) is reduced in Pi , then ( x1.x2 ) is 
reduced in P. 
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If x1 and a 1− x2 are both defined in Pi , then they are defined in 
P. By P6 on P, we have a ∈  Po. 
Therefore Pi is a pregroup satisfying P6 and denote P = * Po Pi . 

 
3. The Universal Group : 

Theorem 3.1:  The universal group of a pregroup satisfying 
P6 is isomorphic to the free product of the universal groups of 
the factors Pi of P , amalgamating Po . 
 
To prove this theorem, we need the following : 
 
Definition 3.1: For x1 and x2 ∈  Pi \ Po , we say that ( x1 . x2 
) is reduced if x1 x2 is not defined in Pi. 
 
Lemma 3.2: If xi ∈  Pi , xj ∈  Pj for i ≠ j , then ( xi , a xj ) is 
reduced for all a ∈  P. 
 
Proof :  If not then , there exists a ∈  Po such that xi a xi is 
defined,  then xi xj

1−
 is defined. So x 1− ∈  P, then x j ∈  Pi a 

contradiction . 
 
Now let U ( Pi ) be the universal group of the pregroup Pi de-
fined in stalling [4], further details with proofs are given in [4] 
. 
Let U ( Pi ) be the universal group of the pregroup Pi and form 
*PoU ( Pi ) . 
 
Definition 3.3 : A sequence x1 . x2 …..xn is reduced in * Po U ( 
Pi ), if xi  xj is not defined for 1 ≤  i ≤  n -1 , 2 ≤  j ≤  n . 
 
Indeed this expression is not unique, but we only need a re-
duced form of the elements of  *PoU ( Pi ) in the theorem . 
 
Proof of the Theorem : 

Define the map ф: *Po U ( Pi ) →  U( P ) by : 
ф ( x1. … .xn ) = x1x2 … xn ∈U ( P ) , where x1 , x2 , … , xn is in 
reduced form in *PoU ( Pi ) 
 
Suppose ф ( x1 . x2 . … . xn ) = x1 x2 … xn = 1 , for n ≥  1 . 
If n = 1 , then ф ( x1 ) = x1 = 1 
If n > 1 , then there exists some i for which xi xi+1 is defined in 
P. 
 
Let xi ∈  Pi , then xi+1 ∈  Pi  , moreover , xi xi+1 is reduced in Pi , 
a contradiction to reduced form in *Po U ( Pi ) .  
Hence ф is one- to - one. 
Since P generate U ( p ) , then ф is onto .  i.e. ф is an isomor-
phism . 

 

Therefore U ( P ) is a free product of U ( Pi ) amalgamating Po.  
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